3.9.15 \(\int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [815]

Optimal. Leaf size=397 \[ \frac {2 (a-b) \sqrt {a+b} \left (14 a^2 b B-63 b^3 B-8 a^3 C-19 a b^2 C\right ) \cot (c+d x) E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^4 d}+\frac {2 (a-b) \sqrt {a+b} \left (b^2 (63 B-25 C)+2 a b (7 B-3 C)-8 a^2 C\right ) \cot (c+d x) F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^3 d}+\frac {2 \left (7 a b B-4 a^2 C+25 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^2 d}+\frac {2 (7 b B+a C) \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b d}+\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d} \]

[Out]

2/105*(a-b)*(14*B*a^2*b-63*B*b^3-8*C*a^3-19*C*a*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(
(a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d+2/105*(a-
b)*(b^2*(63*B-25*C)+2*a*b*(7*B-3*C)-8*a^2*C)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a
-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d+2/105*(7*B*a*b-4*
C*a^2+25*C*b^2)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b^2/d+2/35*(7*B*b+C*a)*sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*tan
(d*x+c)/b/d+2/7*C*sec(d*x+c)^2*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.69, antiderivative size = 397, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {4157, 4116, 4177, 4167, 4090, 3917, 4089} \begin {gather*} \frac {2 (a-b) \sqrt {a+b} \left (-8 a^2 C+2 a b (7 B-3 C)+b^2 (63 B-25 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^3 d}+\frac {2 \left (-4 a^2 C+7 a b B+25 b^2 C\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{105 b^2 d}+\frac {2 (a-b) \sqrt {a+b} \left (-8 a^3 C+14 a^2 b B-19 a b^2 C-63 b^3 B\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^4 d}+\frac {2 (a C+7 b B) \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{35 b d}+\frac {2 C \tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)}}{7 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*(14*a^2*b*B - 63*b^3*B - 8*a^3*C - 19*a*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b
*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]
))/(a - b))])/(105*b^4*d) + (2*(a - b)*Sqrt[a + b]*(b^2*(63*B - 25*C) + 2*a*b*(7*B - 3*C) - 8*a^2*C)*Cot[c + d
*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a +
b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(105*b^3*d) + (2*(7*a*b*B - 4*a^2*C + 25*b^2*C)*Sqrt[a + b*Sec[c
+ d*x]]*Tan[c + d*x])/(105*b^2*d) + (2*(7*b*B + a*C)*Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(35*b
*d) + (2*C*Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(7*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4116

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m +
n))), x] + Dist[d/(m + n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n - 1)*Simp[a*B*(n - 1) + (b*B*(
m + n - 1) + a*A*(m + n))*Csc[e + f*x] + (a*B*m + A*b*(m + n))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e
, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && GtQ[n, 0]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4167

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m
 + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*
B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4177

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(
e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Csc[e + f*x]*Cot[e + f*x]*((a + b*Csc[e + f*x])^
(m + 1)/(b*f*(m + 3))), x] + Dist[1/(b*(m + 3)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m +
2) + A*(m + 3))*Csc[e + f*x] - (2*a*C - b*B*(m + 3))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C,
 m}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\int \sec ^3(c+d x) \sqrt {a+b \sec (c+d x)} (B+C \sec (c+d x)) \, dx\\ &=\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {2}{7} \int \frac {\sec ^2(c+d x) \left (2 a C+\frac {1}{2} (7 a B+5 b C) \sec (c+d x)+\frac {1}{2} (7 b B+a C) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {2 (7 b B+a C) \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b d}+\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {4 \int \frac {\sec (c+d x) \left (\frac {1}{2} a (7 b B+a C)+\frac {1}{4} b (21 b B+23 a C) \sec (c+d x)+\frac {1}{4} \left (7 a b B-4 a^2 C+25 b^2 C\right ) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{35 b}\\ &=\frac {2 \left (7 a b B-4 a^2 C+25 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^2 d}+\frac {2 (7 b B+a C) \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b d}+\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {8 \int \frac {\sec (c+d x) \left (\frac {1}{8} b \left (49 a b B+2 a^2 C+25 b^2 C\right )-\frac {1}{8} \left (14 a^2 b B-63 b^3 B-8 a^3 C-19 a b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^2}\\ &=\frac {2 \left (7 a b B-4 a^2 C+25 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^2 d}+\frac {2 (7 b B+a C) \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b d}+\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d}-\frac {\left (14 a^2 b B-63 b^3 B-8 a^3 C-19 a b^2 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^2}+\frac {\left (8 \left (\frac {1}{8} b \left (49 a b B+2 a^2 C+25 b^2 C\right )+\frac {1}{8} \left (14 a^2 b B-63 b^3 B-8 a^3 C-19 a b^2 C\right )\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b^2}\\ &=\frac {2 (a-b) \sqrt {a+b} \left (14 a^2 b B-63 b^3 B-8 a^3 C-19 a b^2 C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^4 d}+\frac {2 (a-b) \sqrt {a+b} \left (b^2 (63 B-25 C)+a b (14 B-6 C)-8 a^2 C\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^3 d}+\frac {2 \left (7 a b B-4 a^2 C+25 b^2 C\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b^2 d}+\frac {2 (7 b B+a C) \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{35 b d}+\frac {2 C \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(3330\) vs. \(2(397)=794\).
time = 23.65, size = 3330, normalized size = 8.39 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Sqrt[a + b*Sec[c + d*x]]*((2*(-14*a^2*b*B + 63*b^3*B + 8*a^3*C + 19*a*b^2*C)*Sin[c + d*x])/(105*b^3) + (2*Sec
[c + d*x]^2*(7*b*B*Sin[c + d*x] + a*C*Sin[c + d*x]))/(35*b) + (2*Sec[c + d*x]*(7*a*b*B*Sin[c + d*x] - 4*a^2*C*
Sin[c + d*x] + 25*b^2*C*Sin[c + d*x]))/(105*b^2) + (2*C*Sec[c + d*x]^2*Tan[c + d*x])/7))/d - (2*((2*a^2*B)/(15
*b*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (3*b*B)/(5*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (1
9*a*C)/(105*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (8*a^3*C)/(105*b^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Se
c[c + d*x]]) - (2*a*B*Sqrt[Sec[c + d*x]])/(15*Sqrt[b + a*Cos[c + d*x]]) + (2*a^3*B*Sqrt[Sec[c + d*x]])/(15*b^2
*Sqrt[b + a*Cos[c + d*x]]) - (8*a^4*C*Sqrt[Sec[c + d*x]])/(105*b^3*Sqrt[b + a*Cos[c + d*x]]) - (17*a^2*C*Sqrt[
Sec[c + d*x]])/(105*b*Sqrt[b + a*Cos[c + d*x]]) + (5*b*C*Sqrt[Sec[c + d*x]])/(21*Sqrt[b + a*Cos[c + d*x]]) - (
3*a*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(5*Sqrt[b + a*Cos[c + d*x]]) + (2*a^3*B*Cos[2*(c + d*x)]*Sqrt[Sec[c
 + d*x]])/(15*b^2*Sqrt[b + a*Cos[c + d*x]]) - (8*a^4*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(105*b^3*Sqrt[b +
a*Cos[c + d*x]]) - (19*a^2*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(105*b*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Cos[(
c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*(2*(a + b)*(-14*a^2*b*B + 63*b^3*B + 8*a^3*C + 19*a*b^2*C
)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcS
in[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(8*a^2*C - 2*a*b*(7*B + 3*C) + b^2*(63*B + 25*C))*Sqrt[Co
s[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c
 + d*x)/2]], (a - b)/(a + b)] + (-14*a^2*b*B + 63*b^3*B + 8*a^3*C + 19*a*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*
x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*b^3*d*(b + a*Cos[c + d*x])*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Sec[c
+ d*x]]*(-1/105*(a*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(2*(a + b)*(-14*a^2*b*B + 63*b^3*B + 8*a
^3*C + 19*a*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x])
)]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(8*a^2*C - 2*a*b*(7*B + 3*C) + b^2*(63*B
 + 25*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellipt
icF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (-14*a^2*b*B + 63*b^3*B + 8*a^3*C + 19*a*b^2*C)*Cos[c + d*x]*
(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(b^3*(b + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/
2]^2]) + (Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(2*(a + b)*(-14*a^2*b*B + 63*b^3*B + 8*a^3*C
+ 19*a*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*El
lipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(8*a^2*C - 2*a*b*(7*B + 3*C) + b^2*(63*B + 25
*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[A
rcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (-14*a^2*b*B + 63*b^3*B + 8*a^3*C + 19*a*b^2*C)*Cos[c + d*x]*(b +
a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*b^3*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^
2]) - (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(((-14*a^2*b*B + 63*b^3*B + 8*a^3*C + 19*a*b^2*C)*Cos[c + d*x]*
(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^4)/2 + ((a + b)*(-14*a^2*b*B + 63*b^3*B + 8*a^3*C + 19*a*b^2*C)*Sqrt[(b
+ a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c +
 d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*
x])] - (b*(a + b)*(8*a^2*C - 2*a*b*(7*B + 3*C) + b^2*(63*B + 25*C))*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Co
s[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d
*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + ((a + b)*(-14*a^2*b*B + 63*
b^3*B + 8*a^3*C + 19*a*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b
)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1
 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] - (b*(a + b)*(8*a^2*C - 2*a*b*(7
*B + 3*C) + b^2*(63*B + 25*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a -
b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(
1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] - a*(-14*a^2*b*B + 63*b^3*B + 8
*a^3*C + 19*a*b^2*C)*Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (-14*a^2*b*B + 63*b^3*B +
 8*a^3*C + 19*a*b^2*C)*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (-14*a^2*b*B +
63*b^3*B + 8*a^3*C + 19*a*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 - (b*
(a + b)*(8*a^2*C - 2*a*b*(7*B + 3*C) + b^2*(63*...

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(3437\) vs. \(2(363)=726\).
time = 0.51, size = 3438, normalized size = 8.66

method result size
default \(\text {Expression too large to display}\) \(3438\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/105/d*(1+cos(d*x+c))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(8*C*cos(d*x+c)^4*(cos(d*x+c)/
(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b
)/(a+b))^(1/2))*sin(d*x+c)*a^3*b+2*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d
*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2+19*C*cos(d*x+
c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))
/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3-8*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos
(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*
b-19*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(
(-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2-19*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2
))*sin(d*x+c)*a*b^3+8*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*b+2*C*cos(d*x+c)^3*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-
b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2+19*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+c
os(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3-8*C*cos(d*x
+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c)
)/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*b-19*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*c
os(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^
2*b^2-19*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellipt
icE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3-63*B*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/
(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b
)/(a+b))^(1/2))*b^4+63*B*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*
x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^4-63*B*sin(d*x+c)*cos(d*x+c)^3*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(
d*x+c),((a-b)/(a+b))^(1/2))*b^4+63*B*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c
))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^4+14*B*sin(d*x+c)*c
os(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(
d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b-15*C*b^4-4*C*cos(d*x+c)^5*a^3*b+19*C*cos(d*x+c)^5*a^2*b^2+25*C*c
os(d*x+c)^5*a*b^3+8*C*cos(d*x+c)^4*a^3*b-20*C*cos(d*x+c)^4*a^2*b^2+19*C*cos(d*x+c)^4*a*b^3-4*C*cos(d*x+c)^3*a^
3*b-26*C*cos(d*x+c)^3*a*b^3+C*cos(d*x+c)^2*a^2*b^2-18*C*cos(d*x+c)*a*b^3+63*B*cos(d*x+c)^4*b^4-42*B*cos(d*x+c)
^3*b^4-21*B*cos(d*x+c)*b^4-28*B*cos(d*x+c)^2*a*b^3-14*B*cos(d*x+c)^5*a^3*b+7*B*cos(d*x+c)^5*a^2*b^2+63*B*cos(d
*x+c)^5*a*b^3+14*B*cos(d*x+c)^4*a^3*b-14*B*cos(d*x+c)^4*a^2*b^2-35*B*cos(d*x+c)^4*a*b^3+14*B*sin(d*x+c)*cos(d*
x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c
))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2-63*B*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+
a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3-14*B
*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellip
ticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2+49*B*sin(d*x+c)*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))
^(1/2))*a*b^3+14*B*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b+14*B*sin(d*x+c)*cos(d*x+c)^3*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+
c),((a-b)/(a+b))^(1/2))*a^2*b^2-63*B*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c
))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3-14*B*sin(d*x+c)
*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+co
s(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2+49*B*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^4 + B*sec(d*x + c)^3)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (B + C \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}} \sec ^{3}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sqrt(a + b*sec(c + d*x))*sec(c + d*x)**3, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{{\cos \left (c+d\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^2,x)

[Out]

int(((B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^2, x)

________________________________________________________________________________________